Table of Contents

Preface ...i
Acknowledgements ...iii

Chapter 1 - Indigenous Knowledge and Culture

Quandamooka Country: The role of science and knowledge in Traditional Owner-led land and sea management...3-28
 Mibu Fischer, Darren Burns, Joel Bolzenius, Cameron Costello, Darryl Low Choy

A custodial ethic, Indigenous values towards water in Moreton Bay and Catchments...29-44
 Breanna Pinner, Helen Ross, Natalie Jones, Sally Babidge, Sylvie Shaw, Katherine Witt, David Rissik

Chapter 2 - Communities and Values

Values towards Moreton Bay and catchments...47-60
 Helen Ross, Natalie Jones, Katherine Witt, Breanna Pinner, Sylvie Shaw, David Rissik, James Udy

Community knowledge about water and engagement in waterway protection in South East Queensland ... 61-72
 Angela J Dean, Kelly S Fielding, Fiona Newton, Helen Ross

Stewardship as a driver for environmental improvement in Moreton Bay73-88
 Rachael Nasplezes, Joel Bolzenius, Apanie Wood, Ryan Davis, Anne Cleary, Paul Maxwell, David Rissik, Helen Ross

Managing the public health paradox: Benefits and risks associated with waterway use... 89-104
 Anne Roiko, Sonya Kozak, Anne Cleary, Zoe Murray

Education in Quandamooka – A long and evolving tradition..................................105-118
 Emily Casey, Timothy Roe, Ian Tibbetts, Dianne Aylward

Chapter 3 - History and Change in Moreton Bay

An environmental history of Moreton Bay hinterlands.. 121-136
 Justine Kemp, Jon Olley, Samantha Capon

Historical changes of the lower Brisbane River ...137-152
 Jonathan Richards

Holocene history of Moreton Bay reef habitats... 153-162
 Matthew J. Lybolt, John M. Pandolfi
Trace metal contamination and distribution in sediments of Moreton Bay: An historical review .. 163-178
Guia Morelli, Massimo Gasparon

Chapter 4 – Water Quality, Land-Use and Land-Cover

Moreton Bay and catchment urban expansion and vegetation change 181-186
Mitch Lyons, Stuart Phinn, Chris Roelfsema

Water quality in Moreton Bay and its major estuaries: Change over two decades
(2000-2018) ... 187-210
Emily Saeck, James Udy, Paul Maxwell, Alistair Grinham, David Moffatt,
Sivakumar Senthikumar, Danielle Udy, Tony Weber

Wetland and benthic cover changes in Moreton Bay 211-226
Eva M. Kovacs, Hannah L. Tibbetts, Simon Baltais, Mitch Lyons, Jennifer
Loder, Chris Roelfsema

The impact of marine pollutants and debris in Moreton Bay 227-244
Kathy A. Townsend, Christine Baduel, Vicki Hall, Jennifer Loder,
Veronica Matthews, Jochen Mueller, Rachael Nasplezes, Qamar Schuyler,
Heidi Taylor, Jason van de Merwe, C. Alexander Villa, Liesbeth Weijs

Projected changes to population, climate, sea-level and ecosystems 245-256
Megan I. Saunders, Elin Charles Edwards, Rebecca Runting, Jozef Syktus,
Javier Leon

Chapter 5 - Habitats, Biodiversity and Ecosystem Function

Primary producers in Moreton Bay: Phytoplankton, benthic microalgae and
filamentous cyanobacteria ... 259-278
Emily Saeck, Alistair Grinham, Jack Coates-Marnane, Tony McAlister,
Michele Burford

The seagrasses of Moreton Bay Quandamooka: Diversity, ecology and resilience... 279-298
Paul Maxwell, Rod M. Connolly, Chris Roelfsema, Dana Burfeind, James
Udy, Kate O’Brien, Megan I. Saunders, Richard Barnes, Andrew D. Olds,
Chris Henderson, Ben L. Gilby

Mangroves and saltmarshes of Moreton Bay .. 299-318
Catherine E. Lovelock, Arnon Accad, Ralph M. Dowling, Norm Duke,
Shing Yip Lee, Mike Ronan

Freshwater wetlands of Moreton Bay, Quandamooka and catchments:
Biodiversity, ecology, threats and management 319-334
Angela H. Arrthington, Stephen J. Mackay, Mike Ronan, Cassandra S.
James, Mark J. Kennard

Zooplankton of Moreton Bay .. 335-360
Sarah Pausina, Jack Greenwood, Kylie Pitt, David Rissik, Wayne Rochester,
Chapter 6 - Citizen Science

How does citizen science contribute to sustaining the Bay? A discussion of approaches and applications ... 447-458

Jennifer Loder, Chris Roelfsema, Carley Kilpatrick, Victoria Martin

Building an understanding of Moreton Bay Marine Park’s reefs through citizen science ... 459-474

Chris Roelfsema, Jennifer Loder, Kyra Hay, Diana Kleine, Monique Grol, Eva Kovacs

Citizen science photographic identification of marine megafauna populations in the Moreton Bay Marine Park ... 475-490

Christine L. Dudgeon, Carley Kilpatrick, Asia Armstrong, Amelia Armstrong, Mike B. Bennett, Deborah Bowden, Anthony J. Richardson, Kathy A. Townsend, Elizabeth Hawkins

Chapter 7 – Industry and Planning

Tourism in the Moreton Bay Region ... 493-504

Lisa Ruhanen, Mark Orams, Michelle Whitford

Aquaculture in Moreton Bay ... 505-520

Elizabeth West, Carol Conacher, John Dexter, Peter Lee, Michael Heidenreich, Brian Paterson

Fishers and fisheries of Moreton Bay ... 521-536

Ruth Thurstan, Kerrie Fraser, David Brewer, Sarah Buckley, Zena Dinesen, Tim Skewes, Tony Courtney, Barry Pollock
Marine transport infrastructure development in Moreton Bay: Dredging, monitoring and future directions ... 537-546

Adam Cohen, Daniel Spooner, Samuel M. Williams

Charting a course by the stars; a review of progress towards a comprehensive management plan for Moreton Bay 20 years on .. 547-560

Andrew Davidson, Darryl Low Choy

Chapter 8 – Moreton Bay Marine Park

Managing for the multiple uses and values of Moreton Bay and its catchments…… 563-578

Helen Ross, David Rissik, Natalie Jones, Katherine Witt, Breanna Pinner, Sylvie Shaw

Performance of marine reserves for fish and associated ecological functions in the Moreton Bay Marine Park ... 579-592

Ben L. Gilby, Andrew D. Olds, David Rissik, Christopher J. Henderson, Rod M. Connolly, Tim Stevens, Thomas A. Schlacher

Changes in fish and crab abundance in response to the Moreton Bay Marine Park rezoning .. 593-614

Mick Haywood, Richard Pillans, Russ Babcock, Emma Lawrence, Ross Darnell, Charis Burridge, Darren Dennis, Anthea Donovan, Sue Cheers, Robert Pendrey, Quinton Dell

Non-extractive human use and vessel characteristics in Moreton Bay Marine Park following rezoning ... 615-638

Rob Kenyon, Russ Babcock, Quinton Dell, Emma Lawrence, Christian Moeseneder, Mark Tonks

Appendices

Maps of Moreton Bay and catchment

A. Southern Moreton Bay and Islands ... 641
B. Northern Moreton Bay, Moreton and Bribie Islands 643
C. Brisbane River catchment .. 645
D. Greater Moreton Bay catchment rivers ... 647
E. Electronic appendix .. 639
Moreton Bay and catchment urban expansion and vegetation change

Mitchell Lyons, Stuart Phinn and Chris Roelfsema

Author affiliations: School of Earth and Environmental Sciences, The University of Queensland, St. Lucia, Qld, 4072, Australia

Corresponding author: m.lyons@uq.edu.au

ORCID
Mitchell Lyons: https://orcid.org/0000-0003-3960-3522
Stuart Phinn: https://orcid.org/0000-0002-2605-6104
Chris Roelfsema: https://orcid.org/0000-0003-0182-1356

Abstract
Here we describe changes in the Moreton Bay catchment via two remote sensing trajectory analysis methods, both of which are derived from Landsat satellite imagery. First, we describe changes in vegetation cover from a time-series of woody vegetation cover products. We focus on the absolute areas and spatial patterns in vegetation clearing across a time series between 1988 to 2015, focusing on the Brisbane, Pine, Logan and Caboolture River Catchments. We highlight several heavy clearing hotspots, as well as individual years in which clearing increased markedly. Second, we summarise the historical change from a time-series of categorical land cover and land use maps, with a focus on urban expansion. Our analysis shows a steady spread of urban areas outwards from highly developed areas, and a spread of lower density urban areas consistent with the increase in ‘rural residential’ and ‘lifestyle block’ developments.

Keywords: Landsat, remote sensing, time series, urbanisation, tree cover, satellite image

Introduction
As described in detail in the papers in this Chapter, South East Queensland’s catchment has been significantly modified since the 1970s, including: extensive urbanisation; construction of dams and water impoundments; decreases in agricultural land use; and significant changes in vegetation cover. The availability of long term satellite image archives, along with modern computing resources, has seen a rapid growth in methods that utilise time-series analyses for studying and detecting changes in land use and land cover dynamics. Trajectory analysis (as these methods are commonly referred to) from landscape scale analysis from satellite imagery is generally divided into two main approaches: (i) those that detect either abrupt or long-term change that moves a system from one state to another, or (ii) those that explicitly aim to detect and monitor disturbance and recovery trends (1). We describe changes in the Moreton Bay catchment via two such trajectory analysis methods, both of which are derived from Landsat satellite imagery. First, we describe changes in vegetation cover from a time-series of woody extent and foliage projective cover (%), with a focus on land clearing. Second, we summarise the historical change from a time-series of categorical land cover and land use maps, with a focus on urban expansion.
Land clearing in South East Queensland (SEQ)

The Statewide Landcover and Trees Study (SLATS) is a vegetation monitoring program, coordinated by the Queensland Government’s Department of Science, Information Technology and Innovation (2). The program maps and monitors the extent of woody vegetation, with a focus on determining the location, timing and extent of vegetation clearing. The methods include a combination of automated and manual mapping techniques, based on ancillary field data and Landsat satellite imagery. The backbone of the methodology is estimation of foliage projective cover (FPC), the fraction of ground covered by foliage from a ‘birds eye view’, in each Landsat pixel. Time-series of this information was then used to estimate the change in extent of woody vegetation (trees, shrubs and lianas) and the associated clearing rates. Danaher et al. (3) give background on the approach, and the SLATS website (2) describes current methodology, publications and products.

The FPC products are able to show the temporal trend in the intensity of woody vegetation clearing in SEQ between 1988 and 2015 (the years Landsat has been collecting imagery) for the Brisbane, Pine, Logan and Caboolture River Catchments (Fig. 1). Note the clusters of heavier clearing activity, corresponding to a mixture of the development of Brisbane’s residential and commercial property, as well as clearing for agriculture and forestry. Examples include housing development at Springfield Lakes, development and clearing at Yarrabilba, Esk State Forest and the Mount Hallen rural developments, and agricultural and commercial development around the mouth of the Caboolture River. The FPC data can also be summarised to show the yearly clearing totals from 1988 to 2015 (Fig. 2). Note the peaks and troughs in clearing activity, some of which may correspond to changes in clearing legislation, but would need to be confirmed with more detailed study. The FPC mapping and clearing statistics process also provide a more detailed summary on the types of land use that replaces woody vegetation from 1988 to 2015 (Table 1).

Figure 1. Woody vegetation clearing intensity in South East Queensland from 1988 to 2015, in the Brisbane, Pine, Logan and Caboolture River Catchments. Data come from the Queensland Government’s Statewide Landcover and Tree Survey (SLATS)(3)
Land clearing in South East Queensland (SEQ)

The Statewide Landcover and Trees Study (SLATS) is a vegetation monitoring program, coordinated by the Queensland Government’s Department of Science, Information Technology and Innovation (2). The program maps and monitors the extent of woody vegetation, with a focus on determining the location, timing and extent of vegetation clearing. The methods include a combination of automated and manual mapping techniques, based on ancillary field data and Landsat satellite imagery. The backbone of the methodology is estimation of foliage projective cover (FPC), the fraction of ground covered by foliage from a ‘birds eye view’, in each Landsat pixel. Time-series of this information was then used to estimate the change in extent of woody vegetation (trees, shrubs and lianas) and the associated clearing rates. Danaher et al. (3) give background on the approach, and the SLATS website (2) describes current methodology, publications and products.

The FPC products are able to show the temporal trend in the intensity of woody vegetation clearing in SEQ between 1988 and 2015 (the years Landsat has been collecting imagery) for the Brisbane, Pine, Logan and Caboolture River Catchments (Fig. 1). Note the clusters of heavier clearing activity, corresponding to a mixture of the development of Brisbane’s residential and commercial property, as well as clearing for agriculture and forestry. Examples include housing development at Springfield Lakes, development and clearing at Yarrabilba, Esk State Forest and the Mount Hallen rural developments, and agricultural and commercial development around the mouth of the Caboolture River. The FPC data can also be summarised to show the yearly clearing totals from 1988 to 2015 (Fig. 2). Note the peaks and troughs in clearing activity, some of which may correspond to changes in clearing legislation, but would need to be confirmed with more detailed study. The FPC mapping and clearing statistics process also provide a more detailed summary on the types of land use that replaces woody vegetation from 1988 to 2015 (Table 1).

Figure 1. Woody vegetation clearing intensity in South East Queensland from 1988 to 2015, in the Brisbane, Pine, Logan and Caboolture River Catchments. Data come from the Queensland Government’s Statewide Landcover and Tree Survey (SLATS)

Figure 2. Woody vegetation clearing in South East Queensland from 1988 to 2015, in the Brisbane, Pine, Logan and Caboolture River Catchments. Data come from the Queensland Government’s Statewide Landcover and Tree Survey (SLATS)

Urbanisation in South East Queensland

Using an archive of maps of South East Queensland from Lyons et al. (4) we examined the progressive change in the extent of urban areas over the past few decades. The maps were derived from Landsat satellite imagery using object-based image analysis. The maps summarised land cover and land use into the following categories: urban (urban or built area and urban-vegetation mixture); agricultural, non-persistent vegetation (grass, sparse/non-photosynthetic vegetation; bare sand, bare ground); and forest vegetation (closed canopy forest and other dense vegetation, and open canopy forest). Full details on the methods are given in Lyons et al. (4). This approach differs from the SLATS woody cover analysis because the urban cover classes were explicitly mapped as opposed to vegetation being the only parameter of interest.

South East Queensland has experienced rapid and wide spread population growth in the past few decades, and a very clear spatial trend of continued outward urban expansion was visible across the time-series (Fig. 3a). The trend showed that the later stages of development were encroaching on a larger spatial extent of the landscape, but the total area of new developed land was not increasing. That is, smaller individual developments or low density developments were built over relatively large areas. This is consistent with the increase of “rural residential” and “lifestyle block” type developments, where areas between developed sites are still mapped as vegetation proper. The corresponding map of vegetation clearing (Fig. 3b) showed that forest
cover was the main vegetation type to be cleared for development. Note that the map of vegetation clearing does not necessarily match the chronology of urban development, since development does not always directly follow land clearing. For example, clearing rates were higher than average in 2003 (see Fig. 2) and trended downwards to 2013 whereas development did not reflect this trend.

<table>
<thead>
<tr>
<th>epoch</th>
<th>pasture</th>
<th>settlement</th>
<th>mine</th>
<th>infrastructure</th>
<th>timber</th>
<th>thinning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1988-91</td>
<td>5883</td>
<td>3561</td>
<td>211</td>
<td>167</td>
<td>1203</td>
<td>0</td>
</tr>
<tr>
<td>1991-95</td>
<td>5001</td>
<td>3907</td>
<td>153</td>
<td>50</td>
<td>1640</td>
<td>0</td>
</tr>
<tr>
<td>1995-97</td>
<td>5877</td>
<td>1870</td>
<td>113</td>
<td>294</td>
<td>955</td>
<td>0</td>
</tr>
<tr>
<td>1997-99</td>
<td>3415</td>
<td>1411</td>
<td>174</td>
<td>370</td>
<td>1578</td>
<td>0</td>
</tr>
<tr>
<td>1999-00</td>
<td>3725</td>
<td>766</td>
<td>42</td>
<td>309</td>
<td>1051</td>
<td>59</td>
</tr>
<tr>
<td>2000-01</td>
<td>1538</td>
<td>329</td>
<td>26</td>
<td>69</td>
<td>596</td>
<td>0</td>
</tr>
<tr>
<td>2001-02</td>
<td>2192</td>
<td>632</td>
<td>17</td>
<td>111</td>
<td>691</td>
<td>1</td>
</tr>
<tr>
<td>2002-03</td>
<td>3413</td>
<td>2252</td>
<td>41</td>
<td>264</td>
<td>862</td>
<td>10</td>
</tr>
<tr>
<td>2003-04</td>
<td>2417</td>
<td>1494</td>
<td>40</td>
<td>166</td>
<td>609</td>
<td>269</td>
</tr>
<tr>
<td>2004-05</td>
<td>1767</td>
<td>685</td>
<td>7</td>
<td>81</td>
<td>258</td>
<td>25</td>
</tr>
<tr>
<td>2005-06</td>
<td>1646</td>
<td>496</td>
<td>43</td>
<td>65</td>
<td>537</td>
<td>0</td>
</tr>
<tr>
<td>2006-07</td>
<td>2023</td>
<td>239</td>
<td>34</td>
<td>331</td>
<td>370</td>
<td>101</td>
</tr>
<tr>
<td>2007-08</td>
<td>2045</td>
<td>1209</td>
<td>112</td>
<td>577</td>
<td>435</td>
<td>24</td>
</tr>
<tr>
<td>2008-09</td>
<td>1053</td>
<td>871</td>
<td>29</td>
<td>179</td>
<td>203</td>
<td>0</td>
</tr>
<tr>
<td>2009-10</td>
<td>958</td>
<td>577</td>
<td>46</td>
<td>430</td>
<td>394</td>
<td>140</td>
</tr>
<tr>
<td>2010-11</td>
<td>866</td>
<td>669</td>
<td>54</td>
<td>92</td>
<td>658</td>
<td>119</td>
</tr>
<tr>
<td>2011-12</td>
<td>1139</td>
<td>532</td>
<td>36</td>
<td>105</td>
<td>341</td>
<td>119</td>
</tr>
<tr>
<td>2012-13</td>
<td>803</td>
<td>457</td>
<td>22</td>
<td>86</td>
<td>294</td>
<td>294</td>
</tr>
<tr>
<td>2013-14</td>
<td>1072</td>
<td>646</td>
<td>17</td>
<td>120</td>
<td>430</td>
<td>575</td>
</tr>
<tr>
<td>2014-15</td>
<td>1856</td>
<td>976</td>
<td>63</td>
<td>24</td>
<td>728</td>
<td>189</td>
</tr>
</tbody>
</table>

Conclusion
Remote Sensing provides a powerful tool to examine historical changes and trends in land cover change. We have shown two remote sensing-based trajectory analysis methods that provide insight into the historical trends of vegetation clearing and the patterns of urbanisation in South East Queensland. The results from these analyses can be further interrogated and used to make explicit links between past actions, threatening processes and potential mitigation or palliative action. Key items of interest would be: (i) examining the spatial distribution of development and development types (e.g. low- vs high-density), and linking these analyses to biodiversity outcomes, and (ii) analysing the trends over time in clearing rates (e.g. the cyclical nature of the clearing totals) and how this potentially relates to changes in vegetation and biodiversity legislation as well as government cycles. Overall, it highlights the importance of continuing to invest in remote sensing-based methods as new imagery is acquired into the future.
Chapter 4 - Water Quality, Land-Use and Land-Cover

Moreton Bay Quandamooka & Catchment: Past, present, and future

Note that the map of vegetation clearing does not necessarily match the chronology of urban development, since development does not always directly follow land clearing. For example, clearing rates were higher than average in 2003 (see Fig. 2) and trended downwards to 2013 whereas development did not reflect this trend.

Conclusion

Remote Sensing provides a powerful tool to examine historical changes and trends in land cover change. We have shown two remote sensing-based trajectory analysis methods that provide insight into the historical trends of vegetation clearing and the patterns of urbanisation in South East Queensland. The results from these analyses can be further interrogated and used to make explicit links between past actions, threatening processes and potential mitigation or palliative action. Key items of interest would be: (i) examining the spatial distribution of development and development types (e.g. low- vs high-density), and linking these analyses to biodiversity outcomes, and (ii) analysing the trends over time in clearing rates (e.g. the cyclical nature of the clearing totals) and how this potentially relates to changes in vegetation and biodiversity legislation as well as government cycles. Overall, it highlights the importance of continuing to invest in remote sensing-based methods as new imagery is acquired into the future.

Figure 3. For South East Queensland, (a) the decadal patterns in urbanisation from date 1988 to 2013 and (b) the corresponding type of land cover clearing the urbanisation corresponded to over that period. Data derived from Lyons et al. (4).

References